

Class Announcements

• Second Midterm: July 3 (6pm – 8pm). It will be run through Canvas.

• First Midterm: Mean = 79 (Median = 81) & SD = 12. Highest 97 – Lowest 54

 \Rightarrow Overall, a solid exam.

• Next presentations: June 26 (Thursday) - Chapter 11 July 1 (Tuesday) - Chapter 16 (& maybe Chapter 17).

• Second Midterm Review: July 1.

Review: Exposure and NTE

• Exposure (Risk)

- At the firm level, currency risk is called *exposure*.

Three areas

(1) *Transaction exposure*: Risk of transactions denominated in FC with a certain payment date or maturity.

(2) *Economic exposure*: Degree to which a firm's expected cash flows are affected by unexpected changes in S_t .

(3) *Translation exposure*: Accounting-based changes in a firm's consolidated statements that result from a change in S_t . Translation rules create accounting gains/losses due to changes in S_t .

We say a firm is "exposed" or has exposure if it faces currency risk.

Example: Exposure.

A. Transaction exposure.

Swiss Cruises, a Swiss firm, sells cruise packages priced in USD to a broker. Payment in 30 days.

B. Economic exposure.

Swiss Cruises has 50% of its revenue denominated in USD and only 20% of its cost denominated in USD. A depreciation of the USD will affect future CHF cash flows.

C. Translation exposure.

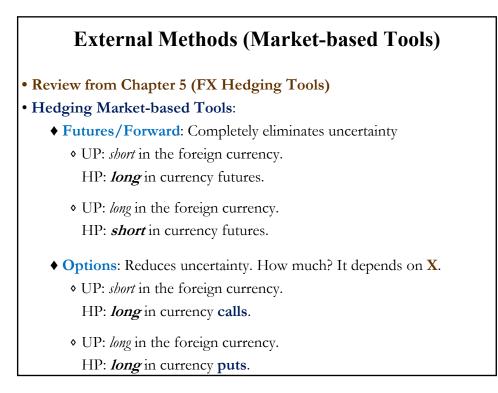
Swiss Cruises obtains a USD loan from a U.S. bank. This liability has to be translated into CHF following Swiss accounting rules.

Review: Exposure and NTE • Transaction exposure (TE) is easy to identify and measure. • Identification: Transactions denominated in FC with a fixed future date • Measure: Translate identified FC transactions to DC using S_t . $TE_{j,t} =$ **Value of a fixed future transaction in FC**_j * S_t **Example**: Swiss Cruises. Sold cruise packages for USD 2.5 million. Payment: 30 days. Bought fuel oil for USD 1.5 million. Payment: 30 days. $S_t = 1.45$ CHF/USD. Thus, the net transaction exposure in USD 30 days is: Net $TE_{j=USD} = ($ USD 2.5M – USD 1.5M) * 1.45 CHF/USD = USD 1M * 1.45 CHF/USD = CHF 1.45M. ¶

Managing TE

A Comparison of External Hedging Tools

Transaction exposure: Risk from the settlement of transactions denominated in foreign currency.


Example: Imports, exports, acquisition of foreign assets.

- Organizational Tools to manage TE (Internal Methods):
 - Contracts that limit TE (Risk shifting (pricing in DC), Risk sharing)
 - Leading-lagging payments between subsidiaries
 - Inflows/Outflows Matching
- Financial Tools to mange TE (External Methods):

Futures/forwards (FH)

Options (OH)

```
Money market (MMH)
```


• New tool: MMH

Money market hedge: Based on a replication of IRPT arbitrage.

Let's take the case of *receivables* denominated in FC:

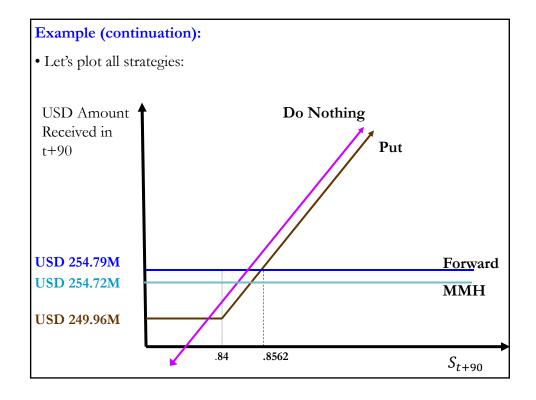
- 1) Borrow FC
- 2) Convert to DC

3) Deposit DC in domestic bank

4) Transfer FC receivable to cover loan (+ interest) from (1).

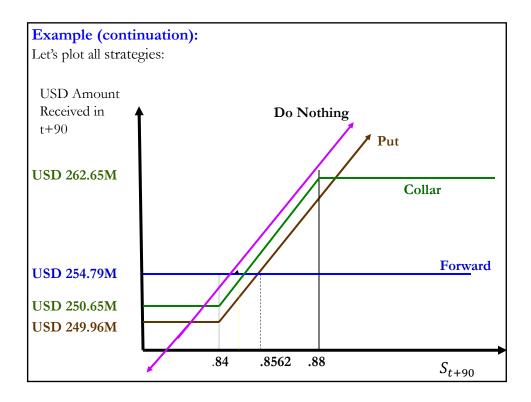
Under IRPT, step 4) involves buying FC forward, to repay loan in (1)

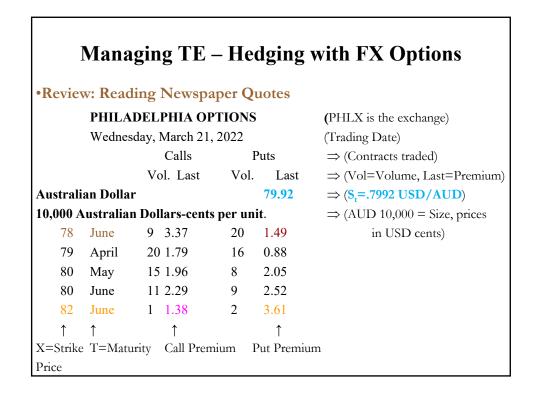
 \Rightarrow This step is not needed, instead, we just transfer the FC receivable.

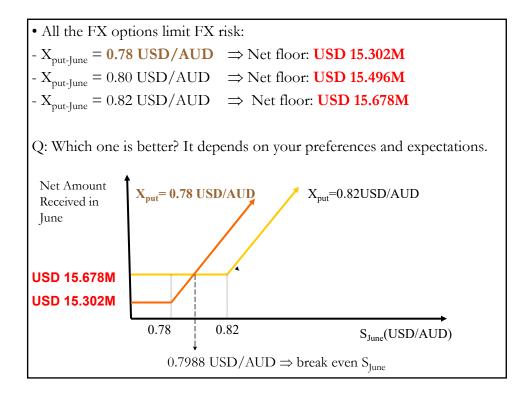

New tool: MMH
Now, let's take the case of *payables* denominated in FC:
1) Borrow DC
2) Convert to FC
3) Deposit FC in domestic bank
4) Transfer FC deposit (+ interest) to cover payable in FC.
Under IRPT, step 4) involves selling FC/buying DC forward, to repay loan in (1)
⇒ This step is not needed, instead, we just transfer the FC deposit.
Q: Why MMH instead of FH?
Under perfect markets ⇒ MMH = FH
Under less than perfect markets ⇒ MMH ≠ FH

 Comparison of Hedging Strategies **Example:** Iris Oil Inc. has a large FC exposure in the form of a CAD cash flow from its Canadian operations. Iris decides to transfer CAD 300M to its USD account in 90 days. FX risk to Iris: CAD may depreciate against the USD. Data: $S_t = 0.8451 \text{ USD/CAD}$ $F_{t,90-dav} = 0.8493 \text{ USD/CAD}$ i_{USD} = **3.92%** i_{CAD} = **2.03%** Calls Puts Χ ----.82 USD/CAD 0.21 .84 USD/CAD 1.58 0.68 .88 USD/CAD 0.23 ____

Example (continuation):DateSpot marketForward marketMoney markett $S_t = .8451 \text{ USD/CAD}$ $F_{t,T=90-day} = .8493 \text{ USD/CAD}$ $i_{USD} = 3.92\%$ t + 90Receive CAD 300M and transfer into USD. $i_{CAD} = 2.03\%$ NTE = CAD 300M * .8451 USD/CAD = USD 253.53M• Hedging Strategies:1. Do NothingDo not hedge and exchange the CAD 300M at S_{t+90} .2. Forward MarketAt t, sell the CAD 300M forward and at time t + 90 guarantee:CAD 300M * .8493 USD/CAD = USD 254,790,000


Example (continuation): 3. Money Market At t, Iris Oil takes the following three steps, simultaneously: 1) Borrow from Canadian bank at 2.03% for 90 days : **CAD 300M** / [1 + .0203 * (90/360)] = CAD 298,485,188.2) Convert to USD at S_t : CAD 298,485,188 * 0.8451 USD/CAD = USD 252,249,832 3) Deposit in US bank at 3.92% for 90 days to guarantee at time t+90: USD 252,249,832 * [1 + .0392 * (90/360)] = USD 254,721,880.Note: Both the FH and the MMH guarantee certainty at time t+90 FH delivers to Iris Oil: USD 254,790,000 MMH delivers to Iris Oil: USD 254,721,880 \Rightarrow Iris Oil selects the FH. (MMH is a *dominated* strategy.)


Example (continuation):				
4. Option Market				
At <i>t</i> , buy a put .	Available 90-	-day options:		
X		Calls	Puts	
.82 USD/CAD			0.21	
.84 USD/CAD		1.58	0.68	
.88 USD/CAD 0.23				
Buy the .84 USD/CAD put \Rightarrow Total premium cost of USD 2.04M.				
Position	Initial CF	Cash flows at t+90		
		$S_{t+90} < .84 \text{ USD/CAD}$	S _{t+90} >.84 USD/CAD	
Option (HP)	USD 2.04M	(.84 – S _{t+90}) * CAD 300M	0	
Underlying (UP)	0	S _{t+90} * CAD 300M	S _{t+90} * CAD 300M	
Total CF	USD 2.04M	USD 252M	S _{t+90} CAD 300M	
Net CF at <i>t</i> + 90:				
USD 24	USD 249,960,000 for $S_{t+90} < .84$ USD/CAD			
or $S_{t+90} * C$	AD 300M -	USD 2.04M for <i>S</i> _{<i>t</i>+90}	> .84 USD/CAD	


Exampl	e (continua	tion): Companies d	lo not like paying	premiums.
5. Colla	ur Ì	, 1	1.0	. 1
At time t	t, <i>buy</i> a put a	nd <i>sell</i> a call .		
Buy .84 p	out at <mark>USD 0</mark>	.0068		
Sell .88 c	all at <mark>USD 0</mark> .	$0023. \qquad \Rightarrow \text{Initial of } $	$\cos t = USD 0.004$	15 per collar
		\Rightarrow Total c	ost: USD 1.35M	
Position	Initial CF	Cash flows at t+90		
		S _{t+90} < .84	$.84 < S_{t+90} < .88$	$S_{t+90} > .88$
Put	USD 2.04M	(.84 –S _{t+90}) * CAD 300M	0	0
Call	-USD 0.69M	0	0	(.88 –S _{t+90}) * CAD 300M
UP	0	S _{t+90} * CAD 300M	S _{t+90} * CAD 300M	S _{t+90} * CAD 300M
Total CF	USD 1.35M	USD 252M	S _{t+90} CAD 300M	USD 264M
Net CF a	t t + 90 :			
USI	D 250.65M	for S_t	₊₉₀ < .84 USD/CA	D
or S _{t+9}	0 CAD 300M -	- USD 1.35M for .84	$4 \text{ USD/CAD} < S_{t+}$	₉₀ < .88 USD/CAD
or USI	D 262.65M	for S _t	+90 > .88 USD/CA	D
<u>Note</u> : Th	is collar reduce	s the upside: establishe	s a floor and a cap.	

• Receivables in FC Example : Receivables AUD 20M \Rightarrow Hedge with FX puts OTM: $X_{put-June} = 0.78$ USD/AUD, P = USD .0149Cost = Total premium = AUD 20M * USD .0149/AUD = USD 298K Floor = 0.78 USD/AUD * AUD 20M =USD 15.6M (Net: USD 15.302M) ITM: $-X_{put-June} = 0.82$ USD/AUD, P = USD .0361 $-X_{put-June} = .80$ USD/AUD, P = USD .0252 (almost ATM) • $X_{put-June} = 0.82$ USD/AUD Cost = Total premium = AUD 20M * USD .0361/AUD = USD 722K Net Floor = 0.82 USD/AUD * AUD 20M - USD 722K = USD 15.678M • $X_{put-June} = 0.80$ USD/AUD (ATM option) Cost = Total premium = USD 504K Net Floor = 0.82 USD/AUD * AUD 20M - USD 504K = USD 15.496M Note: The higher the cost, the higher the floor for the AUD 20M. ¶

Lesson from these examples:

1) Options offer the typical insurance trade-off: Better coverage (lower cap, higher floor) \Rightarrow Higher cost (higher premium)

2) Insurance is expensive. For the $X_{put-June} = 0.80 \text{ USD/AUD}$ case, it costs USD .504M to insure USD 15.496M (a 3.2% premium).

• We can lower the cost of insurance with a Collar, in this case: buy put & sell call, usually OTM.

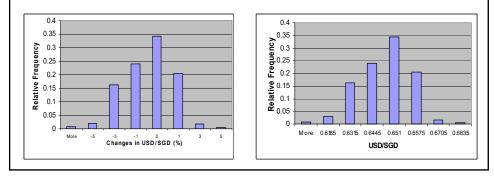
Example: Buy $X_{put-June} = 0.78 \text{ USD}/\text{AUD} (P = \text{USD .0149})$ Sell $X_{call-June} = .82 \text{ USD}/\text{AUD} (P = \text{USD .0138})$

Cost = USD .0149 * 20M – USD .0138 * 20M = USD 22K (very low!) Net Floor = 0.78 USD/AUD * AUD 20M – USD .022M = USD 15.578M Net Cap = 0.82 USD/AUD * AUD 20M – USD .022M = USD 16.378M

A collar is cheaper, but it limits the upside of the option.

• Payables in FC Example: Payable AUD 100M in Mid-June \Rightarrow Hedge with FX calls $S_t = .7992$ USD/AUD $X_{call-June} = .78$ USD/AUD, P = USD .0337 $X_{put-June} = .78$ USD/AUD, P = USD .0149 $X_{call-June} = .80$ USD/AUD, P = USD .0229 $X_{put-June} = .80$ USD/AUD, P = USD .0252 $X_{call-June} = .82$ USD/AUD, P = USD .0138 $X_{put-June} = .82$ USD/AUD, P = USD .0361 OTM: $-X_{call-June} = 0.82$ USD/AUD $-X_{call-June} = 0.80$ USD/AUD (\approx ATM) • $X_{call-June} = 0.82$ USD/AUD, Premium = USD .0138 Cost = Total premium = AUD 100M * USD .0138/AUD = USD 1.38M Cap = AUD 100M * 0.82 USD/AUD = USD 82M (Net: USD 83.38M) • X_{call-June} = **0.80 USD/AUD**, Premium = USD .0229 (almost ATM) Cost = Total premium = **AUD 100M** * USD .0229/AUD = **USD 2.29M** Net Cap = **AUD 100M** * **0.80 USD/AUD** + **USD 2.29M** = **USD 82.29M**

ITM: $X_{call-June} = 0.78 \text{ USD}/\text{AUD}$, Premium = USD .0337 Cost = Total premium = USD 3.37M Net Cap = AUD 100M * 0.78 USD/AUD + USD 3.37M = USD 81.37M


<u>Note</u>: The higher the cost, the lower the cap established for the AUD **100M** payable.

Again, we can lower the cost of insurance using a Collar, in this case: buy a call & sell a put, usually, both OTM.¶

• Optimal Hedging Strategies?

Q: Which strategy is better? We need to say something about S_{t+T} . In the Iris Oil example, we need to make assumptions about S_{t+90} . For example, we can assume a distribution (normal) or use the ED to say something about future changes in S_t .

Example: Suppose we have a **receivable in SGD** in 30 days. We can use the **distribution** for monthly USD/SGD changes from the past 30 years. Then, we get the distribution for S_{t+30} (USD/SGD).

• Examples assuming an	n explicit distribution for S _{t+T}
Example – Receivables:	Evaluate (1) FH, (2) MMH, (3) OH & (4) NH.
Cud Corp will receive SG	D 500,000 in 30 days. (SGD Receivable.)
<u>Data</u> :	
• $S_t = .65006507$ USD	/SGD.
• $F_{t,T=30-day} = .65106$	519 USD/SGD.
• 30-day interest rates: i _{SG}	D: 2.65% - 2.75% & i _{USD} : 3.20% - 3.25%
• A 30-day put option on S	SGD: $\mathbf{X} = .65 \text{ USD/SGD}$ and $P_t = \text{USD.01}$.
• Forecasted <i>S</i> _{<i>t</i>+30} :	
Possible Outcomes	Probability
USD .63	18%
USD .64	24%
USD .65	34%
USD .66	21%
USD .68	3%

(1) FH: Sell SGD 30 days forward
USD received in 30 days = Receivables in SGD * F_{t,30} = SGD 500,000 * .651 USD/SGD = USD 325,500.
(2) MMH:
Borrow SGD at 2.75% for 30 days,
Convert to USD at .65 USD/SGD,
Deposit USD at 3.2% for 30 days,
Repay SGD loan in 30 days with SGD 500,000 receivable
Amount to borrow = SGD 500,000/(1 + .0275 * 30/360) = = SGD 498,856.79
Convert to USD (Amount to deposit in U.S. bank) = = SGD 498,856.79 * .65 USD/SGD = USD 324,256.91
Amount received in 30 days from U.S. bank deposit = = USD 324,256.91 * (1 + .032 * 30/360) = USD 325,121.60

D Received Prob B19,986.5 18% B19,986.5 24% B19,986.5 34%
319,986.5 24%
319,986.5 34%
24,986.5 21%
34,986.5 3%

E[Amount Received in USD] = **319,986.5** * .76 + **324,986.50** * .21 + + **334,986.50** * .03 = **USD 321,486.5**

Possible S _{t+30}	USD Received for SGD 0.5M	Probability
.63 USD/SGD	USD 0.315M	18%
.64 USD/SGD	USD 0.320M	24%
.65 USD/SGD	USD 0.325M	34%
.66 USD/SGD	USD 0.330M	21%
.68 USD/SGD	USD 0.340M	3%

<u>Note</u>: When we compare (1) to (4), it's not clear which one is better. Preferences will matter. We can calculate and expected value:

E[Amount Received in USD] = 315K * .18 + 320K * .24 + 325K * .34+ + 330K * .21 + 335K * . 03 = **USD 323,500**

<u>Conclusion</u>: Cud Corporation is likely to choose the FH. But, risk preferences matter. \P

Example – Payables: Evaluate (1) FH, (2) MMH, (3) OH, (4) No Hedge Situation: Cud Corp needs CHF 100,000 in 180 days. (CHF Payable.) <u>Data</u>: • $S_t = .675 - .680$ USD/CHF. • $F_{t.180} = .695 - .700 \text{ USD/CHF}.$ • 180-day interest rates are as follows: i_{CHF}: **9% - 10%;** i_{usp}: **13% - 14.0%** • A 180-day call option on CHF: $\mathbf{X} = .70 \text{ USD/CHF}$ and $P_t = \text{USD.02}$. • Cud forecasted S_{t+180} : **Possible Outcomes Probability** USD .67 30% **USD**.70 50% **USD**.75 20%

(1) FH: Purchase CHF 180 days forward
USD needed in 180 days = Payables in CHF x F_{t,180} = CHF 100,000 * .70 USD/CHF = USD 70,000.
(2) MMH:
Borrow USD at 14% for 180 days,
Convert to CHF at .680 USD/CHF ,
Invest CHF at 9% for 180 days,
Repay USD loan in 180 days & transfer CHF deposit to cover payable
Amount in CHF to be invested = CHF 100,000/(1 + .09 * 180/360) = CHF 95,693.78
Amount in USD needed to convert into CHF for deposit = = CHF 95,693.78 * .680 USD/CHF = USD 65,071.77
Interest and principal owed on USD loan after 180 days = = USD 65,071.77 * (1 + .14 * 180/360) = USD 69,626.79

Possible S _{t+180}	Premium per CHF + Op Cost	Exercise?	Net Paid for CHF 0.1M	Prot
.67 USD/SGD	USD .0213	No	USD 69,130	30%
.70 USD/SGD	USD .0213	No	USD 72,130	50%
.75 USD/SGD	USD .0213	Yes	USD 72,130	20%
			cluded the opportu	1

 \bullet Preferences matter: A risk taker may like the 30% chance of doing better with the OH than with the MMH.

4) Remain Unhedged: Purchase CHF 100,000 in 180 days.			
Possible S _{t+180}	Net Paid for CHF 0.1M	Probability	
.67 USD/SGD	USD 67,000	30%	
.70 USD/SGD	USD 70,000	50%	
.75 USD/SGD	USD 75,000	20%	

Preferences matter: Again, a risk taker may like the **30% chance** of doing better with the NH than with the MMH. (Actually, there is also an additional 50% chance of being very close to the MMH.)

E[Amount to Pay in USD] = USD 67,000 * .30 + USD 70,000 * .50+ USD 75,000 * .20 =**USD 70,100**

Conclusion: Cud Corporation is likely to choose the MMH. ¶